-
Electrochemical Activity of Positive Electrode Material of P2-Nax[Mg0.33Mn0.67]O2 Sodium Ion Battery Author: ZHANG Xiaojun1, LI Jiale1,2, QIU Wujie2,3, YANG Miaosen1, LIU Jianjun2,3,4 1. Jilin Province Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Northeast Electric Power University, Jilin 132012, China 2. State Key Laboratory of High Perform...
read more
-
LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Properties Manipulation and Its Effect on SOFC Electrochemical Performance ZHANG Kun, WANG Yu, ZHU Tenglong, SUN Kaihua, HAN Minfang, ZHONG Qin. LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Properties Manipulation and Its Effect on SOFC Electrochemical Performance[J]. Journal of Inorganic Materials, DOI: 10....
read more
-
1. What is lithium iron manganese phosphate? Lithium iron manganese phosphate is a new cathode material formed by doping lithium iron phosphate with a certain amount of manganese element. Since the ionic radii and some chemical properties of manganese and iron elements are similar, lithium iron manganese phosphate and lithium iron phosphate are similar in structure, and both have an olivine struct...
read more
-
What is calendering: Calendering of battery electrodes is an important step in the production process of lithium-ion batteries, and its purpose is to obtain electrodes that meet design requirements. Calendering is a necessary process. After the electrode coating and drying, the peeling strength between the active material and the current collector foil is low. At this time, it needs to be calender...
read more
-
This article analyzes the causes of zero voltage. Focused on the phenomenon of zero voltage in the battery caused by electrode burrs. By identifying the cause of the short circuit, we aim to precisely resolve the problem and better understand the importance of controlling electrode burrs during production. Experiment 1. Battery preparation This experiment uses lithium nickel cobalt manganate mater...
read more
-
The principle of laser cleaning is to utilize the characteristics of laser beam with large energy density, controllable direction and strong convergence ability. The laser interacts with contaminants such as oil stains, rust spots, dust residue, coatings, oxide layers or film layers attached to the workpiece base, and is separated from the workpiece base in the form of instantaneous thermal expans...
read more
-
As a key equipment in battery production, the calibration accuracy of the coating head of the lithium battery coating machine directly affects the coating quality, and thus affects the performance and life of the battery. This article will analyze the calibration method of the lithium battery coating machine die head in detail from three levels: basic calibration, positioning calibration, and fine...
read more
-
Recently, Professor Zhang Qiang's team from the Department of Chemical Engineering at Tsinghua University published the research results on the bulk/surface interface structure design of lithium-rich manganese-based cathode materials for all-solid-state metal lithium batteries. They proposed an in-situ bulk/surface interface structure regulation strategy, constructed a fast and stable Li+/e−pathwa...
read more
-
WANG Kunpeng ,1, LIU Zhaolin2, LIN Cunsheng2, WANG Zhiyu ,1,2 1. State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China 2. Branch of New Material Development, Valiant Co., Ltd., Yantai 265503, China Abstract In comparison to Li-ion batteries, Na-ion batteries offer the benefits of low cost, good low-temperature performance, and safety...
read more
-
Lithium iron phosphate (LiFePO4) cathode electrode material oil-based slurry usually uses N-methylpyrrolidone (NMP), dimethyl sulfoxide and dimethylformamide as solvents, which have problems such as difficult solvent recovery, large amount of use and environmental pollution. LiFePO4 positive electrode material water-based slurry uses deionized water as solvent, which is environmentally friendly an...
read more