-
Recently, Professor Zhang Qiang's team from the Department of Chemical Engineering at Tsinghua University published the research results on the bulk/surface interface structure design of lithium-rich manganese-based cathode materials for all-solid-state metal lithium batteries. They proposed an in-situ bulk/surface interface structure regulation strategy, constructed a fast and stable Li+/e−pathwa...
read more
-
The stability and dispersibility of battery slurry have an important impact on the properties of electrodes and finished battery products. So how to characterize the stability and dispersibility of battery slurry? Characterization method of battery slurry stability 1. Solid content method The solid content test method is a low-cost and easy-to-test method. Its principle is to place the slurry in a...
read more
-
WANG Kunpeng ,1, LIU Zhaolin2, LIN Cunsheng2, WANG Zhiyu ,1,2 1. State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China 2. Branch of New Material Development, Valiant Co., Ltd., Yantai 265503, China Abstract In comparison to Li-ion batteries, Na-ion batteries offer the benefits of low cost, good low-temperature performance, and safety...
read more
-
Lithium iron phosphate (LiFePO4) cathode electrode material oil-based slurry usually uses N-methylpyrrolidone (NMP), dimethyl sulfoxide and dimethylformamide as solvents, which have problems such as difficult solvent recovery, large amount of use and environmental pollution. LiFePO4 positive electrode material water-based slurry uses deionized water as solvent, which is environmentally friendly an...
read more