-
LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Properties Manipulation and Its Effect on SOFC Electrochemical Performance ZHANG Kun, WANG Yu, ZHU Tenglong, SUN Kaihua, HAN Minfang, ZHONG Qin. LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Properties Manipulation and Its Effect on SOFC Electrochemical Performance[J]. Journal of Inorganic Materials, DOI: 10....
read more
-
1. What is lithium iron manganese phosphate? Lithium iron manganese phosphate is a new cathode material formed by doping lithium iron phosphate with a certain amount of manganese element. Since the ionic radii and some chemical properties of manganese and iron elements are similar, lithium iron manganese phosphate and lithium iron phosphate are similar in structure, and both have an olivine struct...
read more
-
In recent years, there has been rapid development of sulfide solid electrolytes including Li2S-SiS2, Li2S-B2S3, Li2S-P2S5, Li(10±1)MP2S12(M=Ge, Si, Sn, Al, P), Li6PS5X(X=Cl, Br, I). In particular, the thio-LISICON structure sulfide, represented by Li10GeP2S12 (LGPS), exhibits extremely high room temperature lithium ion conductivity of 12mS/cm exceeding that of liquid electrolytes, which has ...
read more
-
Recently, Professor Zhang Qiang's team from the Department of Chemical Engineering at Tsinghua University published the research results on the bulk/surface interface structure design of lithium-rich manganese-based cathode materials for all-solid-state metal lithium batteries. They proposed an in-situ bulk/surface interface structure regulation strategy, constructed a fast and stable Li+/e−pathwa...
read more
-
When designing lithium-ion batteries, the choice of battery casing material is critical. It must not only protect the battery's internal electrochemical components and structure but also possess properties like heat resistance, corrosion resistance, vibration resistance, and crush resistance. Among numerous materials, aluminum shells have emerged as the preferred choice due to their unique advanta...
read more