-
Lithium-ion batteries are widely used in various fields due to their high energy density, long cycle life and environmental friendliness. The anode electrode slurry is one of the key components of lithium-ion batteries, which affects the performance and safety of the batteries. Therefore, it is important to understand the preparation process and precautions of the anode electrode slurry. The prepa...
read more
-
Lithium-ion batteries are widely used in various fields, such as electric vehicles, consumer electronics, energy storage and aerospace. The performance and quality of lithium-ion batteries depend on the electrode materials and their processing methods. One of the key processes in electrode manufacturing is calendering, which is the compression of the electrode slurry coated on the current collecto...
read more
-
Lithium-ion cylindrical batteries are widely used in many electronic devices due to their high energy density and long cycle life. In this article, we will describe the production process of lithium-ion cylindrical batteries in detail. 1. Raw material preparation The first step in the production process is the preparation of raw materials. The raw materials used for lithium-ion batteries in...
read more
-
Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery[J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. Abstract Cycle stability and specific capacity of cathode materials for sodium ion batteries play an important role i...
read more
-
Dual-lithium-salt Gel Complex Electrolyte: Preparation and Application in Lithium-metal Battery GUO Yuxiang, HUANG Liqiang, WANG Gang, WANG Hongzhi. Dual-lithium-salt Gel Complex Electrolyte: Preparation and Application in Lithium-metal Battery. Journal of Inorganic Materials, 2023, 38(7): 785-792 DOI:10.15541/jim20220761 Abstract Metallic Li is one of the ideal anodes for high energy de...
read more
-
Na3Zr2Si2PO12 Ceramic Electrolytes for Na-ion Battery: Preparation Using Spray-drying Method and Its Property Author:LI Wenkai, ZHAO Ning, BI Zhijie, GUO Xiangxin. Na3Zr2Si2PO12 Ceramic Electrolytes for Na-ion Battery: Preparation Using Spray-drying Method and Its Property. Journal of Inorganic Materials, 2022, 37(2): 189-196 DOI:10.15541/jim20210486 Abstract Na-ion batteries, ...
read more
-
Sergiy Kalnaus, et al. Solid-state batteries: The critical role of mechanics. Science. 381, 1300 (2023). Solid-state batteries with lithium metal anodes have the potential for higher energy density, longer lifetime, wider operating temperature, and increased safety. Although the bulk of the research has focused on improving transport kinetics and electrochemical stability of the materials and inte...
read more
-
Recent progress on anode for sulfide-based all-solid-state lithium batteries —— Part 1 Lithium metal anode Author: JIA Linan, DU Yibo, GUO Bangjun, ZHANG Xi 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China 2. Shanghai Yili New Energy Technology Co. , LTD. , Shanghai 201306, China Abstract All-solid-state lithium batteries (ASSLBs) exhibit hi...
read more
-
Continuing from the previous article Recent progress on anode for sulfide-based all-solid-state lithium batteries —— Part 2 other anodes Author: JIA Linan, DU Yibo, GUO Bangjun, ZHANG Xi 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China 2. Shanghai Yili New Energy Technology Co. , LTD. , Shanghai 201306, China Lithium alloy anode Du...
read more
-
Electrochemical Activity of Positive Electrode Material of P2-Nax[Mg0.33Mn0.67]O2 Sodium Ion Battery Author: ZHANG Xiaojun1, LI Jiale1,2, QIU Wujie2,3, YANG Miaosen1, LIU Jianjun2,3,4 1. Jilin Province Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Northeast Electric Power University, Jilin 132012, China 2. State Key Laboratory of High Perform...
read more
-
Recent Progress of Boron-based Materials in Lithium-sulfur Battery Author: LI Gaoran, LI Hongyang, ZENG Haibo MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Nano Optoelectronic Materials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 Abstract Lithium-sulfur (Li-S) batteries play a crucial role in the...
read more
-
LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Properties Manipulation and Its Effect on SOFC Electrochemical Performance ZHANG Kun, WANG Yu, ZHU Tenglong, SUN Kaihua, HAN Minfang, ZHONG Qin. LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Properties Manipulation and Its Effect on SOFC Electrochemical Performance[J]. Journal of Inorganic Materials, DOI: 10....
read more
-
1. What is lithium iron manganese phosphate? Lithium iron manganese phosphate is a new cathode material formed by doping lithium iron phosphate with a certain amount of manganese element. Since the ionic radii and some chemical properties of manganese and iron elements are similar, lithium iron manganese phosphate and lithium iron phosphate are similar in structure, and both have an olivine struct...
read more
-
Author: XIA Qiuying, SUN Shuo, ZAN Feng, XU Jing, XIA Hui School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China Abstract All-solid-state thin film lithium battery (TFLB) is regarded as the ideal power source for microelectronic devices. However, the relatively low ionic conductivity of amorphous solid-state electrolyte ...
read more
-
F-doped Carbon Coated Nano-Si Anode with High Capacity: Preparation by Gaseous Fluorination and Performance for Lithium Storage Author: SU Nan, QIU Jieshan, WANG Zhiyu. F-doped Carbon Coated Nano-Si Anode with High Capacity: Preparation by Gaseous Fluorination and Performance for Lithium Storage. Journal of Inorganic Materials, 2023, 38(8): 947-953 DOI:10.15541/jim20230009 Abstract ...
read more
-
In recent years, there has been rapid development of sulfide solid electrolytes including Li2S-SiS2, Li2S-B2S3, Li2S-P2S5, Li(10±1)MP2S12(M=Ge, Si, Sn, Al, P), Li6PS5X(X=Cl, Br, I). In particular, the thio-LISICON structure sulfide, represented by Li10GeP2S12 (LGPS), exhibits extremely high room temperature lithium ion conductivity of 12mS/cm exceeding that of liquid electrolytes, which has ...
read more
-
Among the three shell types of cylindrical cell, pouch cell, and prismatic cell, prismatic cell has the highest versatility and market share. But if you want to dismantle the battery to study the internal process design, it is required to ensure safety without short circuiting and without affecting the internal structure. How should you disassemble it? 1.Purpose Guide the disassembly of single pri...
read more
-
What is calendering: Calendering of battery electrodes is an important step in the production process of lithium-ion batteries, and its purpose is to obtain electrodes that meet design requirements. Calendering is a necessary process. After the electrode coating and drying, the peeling strength between the active material and the current collector foil is low. At this time, it needs to be calender...
read more
-
Why are all-solid-state batteries an industry trend? High security: The safety issues of liquid batteries have always been criticized. The electrolyte is easily flammable under high temperature or severe impact. Under high current, lithium dendrites will also appear to pierce the separator and cause short circuit. Sometimes the electrolyte may undergo side reactions or decompose at high temperatur...
read more
-
Whether prismatic cells or cylindrical cells, welding is one of the important processes in battery production. In the lithium battery production line, the production section of the welding process is mainly concentrated in the cells assembly and PACK line section, see the figure below: Brief description of welding process details 1. Safety vent welding The safety vent, also known as the pressure r...
read more